We investigated the effect of structural factor and amide grafted multi-walled carbon nanotubes(MWNTs-NH2) on crushing characteristics of filament wound CFRP tube under quasi-static compression conditon. It was found that CFRP tubes sequentially showed the brittle fracturing mode, the local buckling fracturing mode and transverse shearing fracturing mode with increasing winding angle, respectively, with the characterizations by mechanical testing, SEM and optical microscopy. Moreover, crack propagation initiated by pre-crack and subsequent failure in the tube were strongly dependent on pre-crack angle due to defl ection and penetration competition of crack evolution. The simulated compression failure behavior correlated well with the experimental results, revealing that the Chang-Chang failure criterion was effective in representing the quasistatic crushing characteristics of the tube. In addtion, the MWNTs-NH2 were sucessfully obtained by multistep functionization. The compressvie properties of the tubes were signifi cantly improved by the addition of the MWNTs-NH2 due to their uniform dispersion and high interfacial chemical reactivity, whereas the as-received MWNTs and other functionalized MWNTs were not as effective.