To study the influence of Fe addition on the Al-based amorphous alloys,the structure and properties of Al84Ni10La6 and Al84Ni9Fe1La6 alloys were investigated through various techniques.The results show that 1% Fe(molar fraction) addition increases the area of the pre-peak in the structure factor and decreases the thermal expansion coefficient difference between the crystalline and amorphous states.1% Fe addition also improves the glass forming ability(GFA),micro-hardness,fracture toughness,electric resistivity,absolute diamagnetism and corrosion resistance of Al-Ni-La alloys,which is related to the changes of medium-range order and quench-in free volume caused by 1% Fe addition.
The microstructures and thermal properties of Fe61Co9-xZr8Mo5WxB17 (x=0 and 2) formed under different vacuum conditions were investigated by scanning electron microscopy(SEM), X-ray diffractometry(XRD), transmission electron microscopy(TEM), and conventional dilatometry(DIL). The variation of the non-monotonic effects of tungsten content and vacuum conditions on the glass forming ability(GFA) of Fe-based alloys can be drawn in a schematic diagram. The higher the GFA of alloys, the higher the difference between the thermal expansion coefficients of glassy state and crystalline state(-α), which can be described by the free volume model during dilatometric measurements. Under low and high vacuum conditions, the viscosity and microhardness are improved and the fragility of the Fe-based alloys are decreased by adding tungsten.
The Fe78Si9B13 glassy ribbons were compressed at room temperature with different pressures. The thermal and corrosion behaviors were investigated using various experimental techniques. The X-ray diffraction (XRD) and dilatometer (DIL) results show that the Fe78Si9B13 ribbons are in full amorphous state after pressing and the amount of free volume increases monotonically with increasing pressure. The corrosion resistance of the glassy alloys in various solutions decreases after compression at 10 MPa, but increases after compression at 20 MPa. The non-monotonic change of corrosion resistance is consistent with the result of electrical resistivity, which can be explained by the combining action of free volume that is introduced by the compression and the segregation of Si atoms in the samples.
A metallic crystalline/amorphous (c/a) bulk composite was prepared by the slow cooling method after remelting the amorphous Fe78Si9B13 ribbon. By X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscope (SEM), the composite consists of the primary dendrite α-Ee (without Si) as well as the amorphous matrix. After being anneal at 800 K, the uniform spheroid particles are formed in the c/a composite, which does not form in the amorphous ribbon under the various annealing process. Energy dispersive analysis of X-rays (EDAX), SEM and XRD were applied to give more detailed information. The formation and evolution of the particle may stimulate the possible application of the Fe-matrix amorphous alloy.