1 Introduction Daxinganling region is one of the most important nonferrous metal metallogenetic province(Wu et al.,2011;Li et al.,2014).The northern Daxinganling was a geological blank area in China formerly(Li et al.,2017).However,the region has a huge resource potential.Forty metal deposits have been found in the area recently,with
LI ChaoRen TaoHUANG JianguoHAN RunshengZHOU HongyangFENG Zhihong
The Tayuan(Cu-Mo)-Pb-Zn deposit is located in the northern part of Daxinganling,NE China.Lenticular ore body occurs in the skarn zone.The skarn minerals mainly include garnet,pyroxene,epidote and wollastonite.Electron microprobe analysis shows that the end member of garnet is mainly andradite(Ad_(62-97)Gr_(11-45),the pyroxene is mainly diopside,and epidote is mainly clinozoisite.These characteristics indicate that the Tayuan polymetallic skarn deposit is mainly calcareous skarn.Sometimes the content zonation can be observed in garnets.With one garnet crystal,content is shifty from the core to the rim.In general,the iron content in the core is higher than in the edge.The content in the garnet shows that the garnet in the Tayuan deposit formed from weak oxidation in alkaline environment with the oxygen fugacity increasing,suggesting that the hydrothermal fluid evolved from an acidic to a slight alkaline state.In the Tayuan polymetallic deposit,the ratio of Mn/Fe in pyroxene is about 1.3,and of Mg/Fe,it is about 2.The components of garnet in the Tayuan deposit plot in the field of the typical skarn Zn,Cu,Mo deposits in the world.
The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite porphyry. The K20 content of majority of these rocks is greater than 3%, and, in the K20-SiO2 diagram, all the samples fall into the high-K calc-alkaline to shoshonitic fields. They are enriched in light rare earth elements (LREEs) and depleted in heavy rare earth elements (HREEs; LaN/YbN = 14.3-21.2), and show slightly negative Eu anomalies (6Eu = 0.77-1.00). These rocks have high K, Rb, Sr, and Ba contents; moderate to high enrichment of compatible elements (Cr = 36.7-79.9 ppm, Co = 9.6-16.4 ppm, and MgO = 2.2%-3.4%); low Nb, Ta, and Ti contents, and characteristic of low high field strength elements(HFSEs) versus incompatible elements ratios (Nb/Th = 0.75, Nb/La = 0.34) and incompatible elements ratios (Nb/U = 3.0 and Ce/Pb = 5.1, Ba/Rb = 12.0). These rocks exhibit restricted Sr and Nd isotopic compositions, with (87Sr/S6Sr)i values ranging from 0.7044 to 0.7069 and ENd(t) values from -2.8 to -2.2. The Sr-Nd isotope systematic and specific trace element ratios suggest that Langdu high-K calc-alkaline intrusive rocks derived from a metasomatized mantle source. The unique geochemical feature of intrusive rocks can be modeled successfully using different members of a slightly enriched mantle, a slab-derived fluid, and terrigenous sediments. It can be inferred that the degree of partial melting and the presence of specific components are temporally related to the tectonic evolution of the Zhongdian island arc. Formation of these rocks can be explained by the various degrees of melting within an ascending region of the slightly enriched mantle, triggered by the subduction of the Garz^--Litang ocean, and an interaction between the slab-derived fluid and the terrigenous sediments.