您的位置: 专家智库 > >

国家自然科学基金(61272184)

作品数:2 被引量:0H指数:0
相关作者:魏小燕谢晓芹张志强更多>>
相关机构:哈尔滨工程大学更多>>
发文基金:国家自然科学基金中央高校基本科研业务费专项资金教育部“新世纪优秀人才支持计划”更多>>
相关领域:社会学自动化与计算机技术更多>>

文献类型

  • 2篇期刊文章
  • 1篇会议论文

领域

  • 2篇自动化与计算...
  • 1篇社会学

主题

  • 1篇RANDOM
  • 1篇SOCIAL
  • 1篇TOP-K查...
  • 1篇TOPIC
  • 1篇VISUAL...
  • 1篇WALK
  • 1篇ANALYS...
  • 1篇DRA
  • 1篇JOINT
  • 1篇LING
  • 1篇LINK
  • 1篇MODELI...
  • 1篇不确定数据
  • 1篇查询
  • 1篇TOP

机构

  • 1篇哈尔滨工程大...

作者

  • 1篇张志强
  • 1篇谢晓芹
  • 1篇魏小燕

传媒

  • 1篇计算机科学与...
  • 1篇国际计算机前...

年份

  • 2篇2015
  • 1篇2012
2 条 记 录,以下是 1-3
排序方式:
A Joint Link Prediction Method for Social Network
2015年
The popularity of social network services has caused the rapid growth of the users. To predict the links between users has been recognized as one of the key tasks in social network analysis. Most of the present link prediction methods either analyze the topology structure of social network graph or just concern the user’s interests. These will lead to the low accuracy of prediction.Furthermore, the large amount of user interest information increases the difficulties for common interest extraction. In order to solve the above problems, this paper proposes a joint social network link prediction method-JLPM.Firstly, we give the problem formulation. Secondly, we define a joint prediction feature model(JPFM) to describe user interest topic feature and network topology structure feature synthetically, and present corresponding feature extracting algorithm. JPFM uses the LDA topic model to extract user interest topics and uses a random walk algorithm to extract the network topology features. Thirdly,by transforming the link prediction problem to a classification problem, we use the typical SVM classifier to predict the possible links. Finally, experimental results on citation data set show the feasibility of our method.
Xiaoqin XieYijia LiZhiqiang ZhangShuai HanHaiwei Pan
关键词:SOCIALLINKTOPICRANDOMWALK
利用控制关系分析优化不确定数据Top-k查询
2012年
由于概率维的存在,使得准确高效地处理不确定数据的Top-k查询成为一个急需解决的难题。提出了一种利用控制关系分析(dominate relationship analysis,DRA)的不确定数据Top-k查询算法。该算法通过分析元组之间的控制关系,将那些最有可能成为Top-k查询结果的元组选择出来,这样大大减少了参加运算的元组数量,显著提升了查询效率。并且在数据库更新时,能够判断出此更新是否影响到之前得到的查询结果,从而决定是否需要重查,减少了重查的计算量。
张志强魏小燕谢晓芹
关键词:不确定数据
Visualization Analysis for 3D Big Data Modeling
This paper describes an automatic system for 3D big data of face modeling using front and side view images tak...
TianChi ZhangJing ZhangJianPei ZhangHaiWei PanKathawach Satianpakiranakorn
共1页<1>
聚类工具0