将极大似然期望最大化(maximum likelihood estimation via the expectation maximization,MLE-EM)算法拓展到了广义诊断模型估计中,并详细描述了如何使用期望最大化算法计算模型参数的极大似然估计值.从理论上明确指出,在认知诊断模型中存在的2类参数,即项目参数和结构参数,都是从观察数据中自由估计获得的.据此对项目反应理论和认知诊断模型中所用的边际极大似然估计期望最大化(marginal maximum likelihood estimation via the expectation maximization,MMLE-EM)算法理论进行了澄清,指出以往一些研究出现错误结论的原因.最后从模型整合的视角上为后续的研究提出了4条建议.
Generalized DINA Model(G-DINA)为认知诊断模型提供了一个一般性的理论框架,而高阶诊断模型不仅能描述被试的总体水平,还能描述被试对属性的掌握情况(微观的认知状态)以及被试掌握属性与能力的关系,提供更丰富的信息。如果能把这两者结合起来,可能对实际诊断工作的操作有较大帮助。文章首先对考虑高阶结构的整合性模型——HO-GDINA模型的形式进行讨论,探讨其参数估计EM算法的实现,并用模拟过程对模型的估计精度进行研究,结果验证了HO-GDINA的EM算法的正确性,并且说明该算法对该模型有较高估计精确度。然后用饱和模型在约束条件下的特殊形式HO-DINA模型对"分数减法"这一经典数据进行EM算法参数估计和具体分析,展示了HO-GDINA在实际情况中的具体使用,并与de la Torre之前用MCMC估计算法得到的研究结果做比较,基本一致,进一步表明HO-GDINA模型的参数估计EM算法在实际情境中的特殊形式下仍然适用。
Hou,de la Torre和Nandakumar(2014)提出可以使用Wald统计量检验DIF,但其结果的一类错误率存在过度膨胀的问题。本研究中提出了一个使用观察信息矩阵进行计算的改进后的Wald统计量。结果表明:(1)使用观察信息矩阵计算的这一改进后的Wald统计量在DIF检验中具有良好的一类错误控制率,尤其是在项目具有较高区分能力的时候,解决了以往研究中一类错误率过度膨胀的问题。(2)随着样本量的增加以及DIF量的增大,使用观察信息矩阵计算Wald统计量的统计检验力也在增加。