The band gap of a photonic crystal (PhC) cavity intrinsically avoids HOM problems. In this paper, we present a new PBG structure based on the possible advantage of using hybrid structures and aperiodic lattices. This novel hybrid and aperiodically ordered cavity was designed for apparently higher Q-factor (more than 10300) and achieving large accelerating field gradient. The HOMs in the cavity are able to be absorbed efficiently.
Using the Hefei Light Source phase Ⅱ project (HLS- Ⅱ) as an example, a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity (HHC) is given. The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed. The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented. The calculated results show that the reduced bunch length is about half that of the nominal bunch. The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario, while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario. In addition, the synchrotron frequency spread is increased. It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.
In PASER (particle acceleration by stimulated emission of radiation), in the presence of an active medium incorporated in a Penning trap, moving electrons can become bunched, and as they get enough energy, they escape the trap forming an optical injector. These bunched electrons can enter the next PASER section filled with the same active medium to be accelerated. In this paper, electron dynamics in the presence of a gas mixture active medium incorporated in a Penning trap is analyzed by developing an idealized 1D model. We evaluate the energy exchange occurring as the train of electrons traverses into the next PASER section. The results show that the oscillating electrons can be bunched at the resonant frequency of the active medium. The influence of the trapped time and population inversion are analyzed, showing that the longer the electrons are trapped, the more energy from the medium the accelerated electrons get, and with the increase of population inversion, the decelerated electrons are virtually unchanged but the accelerated electrons more than double their peak energy values. The simulation results show that the gas active medium needs a lower population inversion to bunch the electrons compared to a solid active medium, so the experimental conditions can easily be achieved.
A simulation code that executes the tracking of longitudinal oscillations of the bunches for the double rf system of the Hefei Light Source Ⅱ Project (HLS-Ⅱ) is presented to estimate the mean beam lifetime and the Robinson instabilities. The tracking results show that the mean beam lifetime is in agreement with the analytical results and the system is stable when we tune the harmonic cavity in the optimum lengthening conditions. Moreover, the simulated results of the asymmetric fill pattern show that some bunches are compressed only with a 7% gap (3 gaps), which will lead to the reduction in the mean bunch lengthening and potential beam lifetime. It is demonstrated that HLS-Ⅱ with a passive higher harmonic cavity is not suitable for operating in an asymmetric fill pattern.
A higher-harmonic cavity will be used to increase the beam lifetime and suppress coupled-bunch instabilities for Hefei Light Source-II. In this paper, results simulated by the particle-tracking model confirm that tuning in the harmonic cavity may suppress the parasitic coupled-bunch instabilities. The factors calculated for lifetime improvement are larger than 2.5. The 3rd and 4th harmonic cavities have been designed. In particular, the absorbers and antenna couplers are applied in harmonic cavities to damp the higher order modes. Finally, the 4th harmonic cavity similar to the Duke's RF cavity will be used for HLS-II.
A passive higher harmonic cavity (HHC) will be used in the Hefei Light Source II Project (HLS- II) to lengthen the bunch and consequently increase the beam lifetime dominated by Touschek scattering. The effects of constant voltage and constant detuning have been calculated and compared over the operating current from 0.4 to 0.2 A on the bunch lengthening for the passive normal conducting harmonic cavity system in HLS-II. The results show that the bunch shape has less change and the lifetime improvement factors are not less than 2.7 over the beam currents for the constant voltage case. The constant voltage operating scheme may be applied to our machine.
In particle acceleration by stimulated emission of radiation(PASER), efficient interaction occurs when a train of micro-bunches has periodicity identical to the resonance frequency of the medium. Previous theoretical calculations based on the simplified model have only considered the energy exchange in the boundless condition.Under experimental conditions, however, the gas active medium must be guided by the metal waveguide. In this paper, we have developed a model of the energy exchange between a train of micro-bunches and a gas mixture active medium in a waveguide boundary for the first time, based on the theory of electromagnetic fields, and made detailed analysis and calculations with Math CAD. The results show that energy density can be optimized to a certain value to get the maximum energy exchange.