Simulate anneal arithmetic has been used to settle the problem of time bunching on a pulsed slow-positron beam device. This paper has searched for the parameters of the device in a large scope and achieved the time resolution within 150ps at the target with accelerating voltage in a range of 0.5-30kV.
Many methods are used to calculate the positron lifetime, these methods could be divided into two main types. The first method is atomic superposition approximation method and the second one is the so called energy band calculation method. They are also known as the non-self-consistent field method and self-consistent field method respectively. In this paper, we first introduce the two basic methods and then, we take Si as an example and give our calculation results, these results coincide with our latest experimental results, finally, we discuss the advantages and disadvantages of the two methods.
The elementary excitation spectrum of a two-component Bose-Einstein condensate in different hyperfine states is obtained by Green's function method. It is found to have two branches. In the long wave-length limit, the two branches of the excitation spectrum are reduced to one phonon excitation and one single-particle excitation. The single-particle one has an energy gap. When the energy gap exists, we study the Landau critical velocity and the depletion of the condensate. With the obtained Green's functions, we calculate the structure factor of a two-component condensate. It is found that the static structure factor comprises only the branch of the phonon excitation and the single-particle excitation makes no contribution to the structure factor.