The dynamics of set value mapping is considered. For the upper semi-continuous set value maps, the existence of attractors under some conditions and the upper semi-continuity of attractors under the perturbation are proved. Its application in numerical simulation of differential equation is also considered. The upper semi-continuity of attractors in set value maps under the perturbation is used to show the reasonable of subdivision algorithm and interval arithmetic in numerical simulation of differential equation.
We consider random systems generated by two-sided compositions of random surface diffeomorphisms, together with an ergodic Borel probability measure μ. Let D(μω) be its dimension of the sample measure, then we prove a formula relating D(μω) to the entropy and Lyapunov exponents of the random system, where D (μω) is dimHμω, dimBμm, or dimBμm.
In this paper the upper semi-continuity of global attractors for multivalued semi-flows under random perturbation was studied. First, the existence of random attractors for multivalued random semi-flows was considered, then it was proved that the global attractors for multivalue semi-flows are the upper semi-continuity under random perturbation. This result can be used in the numerical approximation of multivalued semi-flows and non-autonomous perturbation of multivalued semi-flows.
1 IntroductionIn this paper we study the existence of pullback attractors for multivalued nonautonomous and multivalued random semiflow. In [1] and [2], the authors have proved the existence of pullback attractors of multivalued nonautonomous semiflow (random semiflow) under the assumption of the existence of compact absorbing set. In [3], the authors have proved the existence of pullback attractors of multivalued nonautonomous semiflow and random semiflow under the assumptions of uniformly pullback asymptotically upper semicompact and closed graph. In [4], the authors consider the existence of pullback attractor of singlevalued nonautonomous semiflow and random semiflow under the assumption of pullback asymptotic compactness. Instead of these assumptions, we consider multivalued nonautonomous semiflow and multivalued random semiflow with weak pullback asymptotic upper semi-compactness and prove the existence of pullback attractors.