In this article, we investigate Programming Evaluation and Review Technique networks with independently and generally distributed activity durations. For any path in this network, we select all the activities related to this path such that the completion time of the sub-network (only consisting of all the related activities) is equal to the completion time of this path. We use the elapsed time as the supplementary variables and model this sub-network as a Markov skeleton process, the state space is related to the subnetwork structure. Then use the backward equation to compute the distribution of the sub-network's completion time, which is an important rule in project management and scheduling.
In this article, we focus on discussing the degree distribution of the DMS model from the perspective of probability. On the basis of the concept and technique of first-passage probability in Markov theory, we provide a rigorous proof for existence of the steady-state degree distribution, mathematically re-deriving the exact formula of the distribution. The approach based on Markov chain theory is universal and performs well in a large class of growing networks.
In this paper, we study a class of stochastic processes, called evolving network Markov chains, in evolving networks. Our approach is to transform the degree distribution problem of an evolving network to a corresponding problem of evolving network Markov chains. We investigate the evolving network Markov chains, thereby obtaining some exact formulas as well as a precise criterion for determining whether the steady degree distribution of the evolving network is a power-law or not. With this new method, we finally obtain a rigorous, exact and unified solution of the steady degree distribution of the evolving network.