We give a brief introduction to the oxide (ZnO, TiO2, In2O3, SnO2, etc.)-based magnetic semiconductors from fundamental material aspects through fascinating magnetic, transport, and optical properties, particularly at room temperature, to promising device applications. The origin of the observed ferromagnetism is also discussed, with a special focus on first-principles investigations of the exchange interactions between transition metal dopants in oxide-based magnetic semiconductors.
A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites.This method involves coating Fe2O3 nanorods with a uniform silica layer,reduction in 10%H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4,and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods.The fabricated nanocomposites are further characterized by x-ray diffraction,transmission electron microscopy,scanning electron microscope,Fourier transform infrared spectroscopy,and inductively coupled plasma mass spectroscopy.The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B(RhB) at room temperature,and maintain superior catalytic activity even after six cycles.In addition,these samples could be easily separated from the catalytic system by an external magnet and reused,which shows great potential applications in treating waste water.
Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of A1203 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect.
Over the past half a century, considerable research activities have been directing towards the development of magnetic semiconductors that can work at room temperature. These efforts were aimed at seeking room temperature magnetic semiconductors with strong and controllable s, p-d exchange interaction. With this s, p-d exchange interaction, one can utilize the spin degree of freedom to design applicable spintronics devices with very attractive functions that are not available in conventional semiconductors. Here, we first review the progress in understanding of this particular material and the dilemma to prepare a room temperature magnetic semiconductor. Then we discuss recent experimental progresses to pursue strong s, p-d interaction to realize room temperature magnetic semiconductors, which are achieved by introducing a very high concentration of magnetic atoms by means of low-temperature nonequilibrium growth.
The MnSe(x = 1,2) nanoparticles were synthesized under hydrothermal condition,by reaction of the reduced selenium and Mnion in the presence of hydrazine and acetic acid.By precisely controlling the pH value of the solution,a series of MnSeparticles were synthesized.The structure and morphology of as-prepared particles were examined with x-ray diffractometer(XRD),transmission electron microscopy(TEM),and scanning electron microscopy(SEM).The average sizes of as-prepared particles varied from nanoscale to microscale with pH value increase.Furthermore,the nucleation and growth mechanism associated with pH values were discussed,which can be applied to the hydrothermal synthesis of metal chalcogenide in general.Finally,the optical and magnetic properties of as-prepared particles were measured.All as-made particles exhibit a ferromagnetic behavior with low coercivity and remanence at room temperature.
Recent progress in organic spintronics is given an informative overview, covering spin injection, detection, and trans-port in organic spin valve devices, and the magnetic field effect in organic semiconductors (OSCs). In particular, we focus on our own recent work in spin injection and the organic magnetic field effect (OMFE).