Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.
An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring.
In this paper, a new preference multi-objective optimization algorithm called immune clone algorithm based on reference direction method (RD-ICA) is proposed for solving many-objective optimization problems. First, an intelligent recombination operator, which performs well on the functions comprising many parameters, is introduced into an immune clone algorithm so as to explore the potentially excellent gene segments of all individuals in the antibody pop- ulation. Second, a reference direction method, a very strict ranking based on the desire of decision makers (DMs), is used to guide selection and clone of the active population. Then a light beam search (LBS) is borrowed to pick out a small set of individuals filling the external population. The proposed method has been extensively compared with other recently proposed evolutionary multi-objective optimization (EMO) approaches over DTLZ problems with from 4 to 100 objectives. Experimental results indicate RD-ICA can achieve competitive results.
Ruochen LIU Chenlin MA Fei HE Wenping MA Licheng JIAO