Objective:To test the effects of salidroside on formation and growth of glioma together with tumor microenvironment.Methods:Salidroside extracted from Rhodiola rosea was purified and treated on human glioma cells U251 at the concentration of 20 μg/mL.3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT) assay for cytotoxicity and flow cytometry (FCM) for cell cycle analysis were performed.Then for in vivo study,xenotransplantation tumor model in nude mice was generated and treated with salidroside at the concentration of 50 mg/kg.d for totally 20 d.Body weight and tumor size were detected every 2 d after the treatment.The levels of 8-isoprostane,superoxide dismutase (SOD) and malondialdehyde (MDA),special markers for oxidative stress,were detected while immunofluoresence staining was performed for astrocyte detection.Results:For in vitro study,salidroside could decrease the viability of human glioma cells U251 and the growth of U251 cells at G0/G1 checkpoint during the cell cycle.For in vivo study,salidroside could also inhibit the growth of human glioma tissue in nude mice.The body weight of these nude mice treated with salidroside did not decrease as quickly as control group.In the tumor xenotransplantation nude mice model,mice were found of inhibition of oxidative stress by detection of biomarkers.Furthermore,overgrowth of astrocytes due to the stimulation of oxidative stress in the cortex of brain was inhibited after the treatment of salidroside.Conclusions:Salidroside could inhibit the formation and growth of glioma both in vivo and in vitro and improve the tumor microenvironment via inhibition of oxidative stress and astrocytes.
Background Serum testosterone levels have been found lower in acute ischemic stroke male patients. However, the exact mechanism remains unclear. In the present study, we measured serum testosterone levels, steroidogenesis- related genes and Leydig cells number in experimental transient cerebral ischemia male rats to elucidate the mechanism. Methods The middle cerebral arteries of adult male Sprague-Dawley rats were sutured for 120 minutes and then sacrificed after 24 hours. Blood was collected for measurement of serum testosterone, follicular stimulating hormone and estradiol levels, and testes were collected for measurement of steroidogenesis-related gene mRNA levels and number of Leydig cells. Results Serum testosterone levels in rats after cerebral ischemia were significantly lower (0.53±0.16) ng/ml, n=7, mean+SE) compared with control ((2.33±0.60) ng/ml, n=7), while serum estradiol and follicular stimulating hormone levels did not change. The mRNA levels for luteinizing hormone receptor (Lhcgr), scavenger receptor class B member 1 (Scarbl), steroidogenic acute regulatory protein (STAR), cholesterol side chain cleavage enzyme (Cyplla1), 3β-hydroxysteroid dehydrogenase 1 (HSD3β1), 17α-hydroxylase/20-1yase (Cyp17α1) and membrane receptor c-kit (kit) were significantly downregulated by cerebral ischemia, while luteinizing hormone, Kit ligand (KitL), 1713-hydrosteroid dehydrogenase 3 (HSD17β3) and 5α-reductase (Srd5α1) were not affected. We also observed that, relative to control, the Leydig cell number did not change. Conclusions These results indicate that transient cerebral ischemia in the brain results in lower expression levels of steroidogenesis-related genes and thus lower serum testosterone level. Transient cerebral ischemia did not lower the number of Leydig cells.