本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型的模拟预报结果与序列的自相关性有密切关系;(2)当序列有较好的自相关性时,可参照autoregression模型建立相应的resilient back propagation模型;(3)与传统autoregression模型相比,resilient back propagation模型能取得更高的预报精度;且随着预报步长增加,resilient back propagation模型的优势更加明显.
Groundwater system is a complex and open system, which is affected by natural conditions and human activities. Natural hydrological processes is conceptualized through relatively simple flow governing equations in groundwater models. Moreover, observation data is always limited in field hydrogeological conditions. Therefore, the predictive results of groundwater simulation often deviate from true values, which is attribute to the uncertainty of groundwater numerical simulation. According to the process of system simulation, the uncertainty sources of groundwater numerical simulation can be divided into model parameters, conceptual model and observation data uncertainties. In addition, the uncertainty stemmed from boundary conditions is sometimes refered as scenario uncertainty. In this paper, the origination and category of groundwater modeling uncertainty are analyzed. The recent progresses on the methods of groundwater modeling uncertainty analysis are reivewed. Furthermore, the researches on the comprehensive analysis of uncertainty sources, and the predictive uncertainty of model outputs are discussed. Finally, several prospects on the deveolpment of groundwater modeling uncetainty analysis are proposed.
As soil cation exchange capacity (CEC) is a vital indicator of soil quality and pollutant sequestration capacity,a study was conducted to evaluate cokriging of CEC with the principal components derived from soil physico-chemical properties.In Qingdao,China,107 soil samples were collected.Soil CEC was estimated by using 86 soil samples for prediction and 21 soil samples for test.The first two principal components (PC1 and PC2) together explained 60.2% of the total variance of soil physico-chemical properties.The PC1 was highly correlated with CEC (r=0.76,P0.01),whereas there was no significant correlation between CEC and PC2 (r=0.03).The PC1 was then used as an auxiliary variable for the prediction of soil CEC.Mean error (ME) and root mean square error (RMSE) of kriging for the test dataset were-1.76 and 3.67 cmolc kg-1,and ME and RMSE of cokriging for the test dataset were-1.47 and 2.95 cmolc kg-1,respectively.The cross-validation R2 for the prediction dataset was 0.24 for kriging and 0.39 for cokriging.The results show that cokriging with PC1 is more reliable than kriging for spatial interpolation.In addition,principal components have the highest potential for cokriging predictions when the principal components have good correlations with the primary variables.