Nearly free electron (NFE) state has been widely studied in low dimensional systems. Based on first-principles calculations, we identify two types of NFE states in graphane nanoribbon superlattice, similar to those of graphene nanoribbons and boron nitride nanoribbons. Effect of electron doping on the NFE states in graphane nanoribbon superlattice has been studied, and it is possible to open a vacuum transport channel via electron doping.
We have studied the nucleation process of a two-dimensional kinetic Ising model subject to a bias oscillating external field, focusing on how the nucleation time depends on the oscillation frequency. It is found that the nucleation time shows a clear-cut minimum with the variation of oscillation frequency, wherein the average size of the critical nuclei is the smallest, indicating that an oscillating external field with an optimal frequency can be much more favorable to the nucleation process than a constant field. We have also investigated the effect of the initial phase of the external field, which helps to illustrate the occurrence of such an interesting finding.
In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(lll) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and -√7× √3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results.
Fluctuation theorem for entropy production in a mesoscopic chemical reaction network is discussed. When the system size is sufficiently large, it is found that, by defining a kind of coarse-grained dissipation function, the entropy production in a reversible reaction channel can be approximately described by a type of detailed fluctuation theorem. Such a fluctuation relation has been successfully tested by direct simulations in a linear reaction model consisting of two reversible channels and in an oscillatory model wherein only one channel is reversible.