Guanidine was introduced to low molecular weight linear polyethyleneimine (LPEI) via amide groups, to explore the effect of both guanidine degree and pendant chain length on its transfection behavior. The resulting guanidinoamidized LPEIs (GLPEIs) could dramatically reduce LPEI's toxicity, enhance its DNA-packaging capability, cellular uptake and therefore transfection efficiency. These polyplexes were taken up very efficiently via caveolae-mediated endocytosis and their transfection efficiencies in ovarian cancer cells were significantly improved compared to native LPEIlok polyplexes. Among these GLPEIs, LPEI-C3-G100 showed higher DNA affinity even than LPEI25k and the highest transfection efficiency, probably due to the optimization of polymer chain flexibility. Of notice, LPEI-C3-G100 polyplexes could more effectively accumulate into cytoplasm than LPEI25k, although the transfection efficiency of LPEI-C3-G100 polyplexes was not superior to that of LPEI25k polyplexes, which would be probably attributed to the more efficient release of LPEI25k polyplexes than LPEI-C3-G100 polyplexes in the cytoplasm.
Bo ZhangXin-peng MaMei-hua SuiEdward Van KirkWillia m J.MurdochMaciej Radosz林能明申有青