In this paper we obtain a Douglas type factor decomposition theorem about certain important bounded module maps. Thus, we come to the discussion of the topological continuity of bounded generalized inverse module maps. Let X be a topological space, x →Tx : X→L(E) be a continuous map, and each R(Tx) be a closed submodule in E, for every fixed x C X. Then the map x→ Tx^+: X→L(E) is continuous if and only if ||Tx^+|| is locally bounded, where Tx^+ is the bounded generalized inverse module map of Tx. Furthermore, this is equivalent to the following statement: For each x0 in X, there exists a neighborhood ∪0 at x0 and a positive number λ such that (0, λ^2)lohtatn in ∩x∈∪0C/σ(Tx^+Tx), where a(T) denotes the spectrum of operator T.
In this paper we will obtain a Stone type theorem under the frame of Hilbert C*-module, such that the classical Stone theorem is our special case. Then we use it as a main tool to obtain a spectrum decomposition theorem of certain stationary quantum stochastic process. In the end, we will give it an interpretation in statistical mechanics of multi-linear response.