We study peaked wave solutions of a generalized Hyperelastic-rod wave equation describing waves in compressible hyperelastic-rods by using the bifurcation theory of planar dynamical systems and numerical simulation method. The existence domain of the peaked solitary waves are found. The analytic expressions of peaked solitary wave solutions are obtained. Our numerical simulation and qualitative results are identical.
In this paper, we study some generalized Camassa-Holm equation. Through the analysis of the phase-portraits, the existence of solitary wave, cusp wave, periodic wave, periodic cusp wave and compactons were discussed. In some certain parametric conditions, many exact solutions to the above travelling waves were given. Further-more, the 3D and 2D pictures of the above travelling wave solutions are drawn using Maple software.
Rui Weiguo, Long Yao, He Bin (Dept. of Math., Honghe University, Mengzi 661100, Yunnan)