An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k ≥ 1, let h(κ) be the smallest integer such that every set of points in the plane, no three collinear, with at least h(κ) interior points, has a subset of points with exactly κ or κ + 1 interior points of P. We prove that h(5)=11.