Very recently, Yu, Le and Zhou introduced the so called △B1^* and △B2^* conditions, which are generalizations of the monotone condition. By applying these two new conditions, the author essentially generalizes the classical results of Chen on the necessary and sufficient conditions of the Lp integrability of trigonometric series. In fact, the present paper gives the first result on the necessary and sufficient conditions of the Lp integrability of trigonometric series, where coefficients may have different signs.
The paper proves that, if f(x) ∈ L^p[-1,1],1≤p〈∞ ,changes sign I times in (-1, 1),then there exists a real rational function r(x) ∈ Rn^(2μ-1)l which is eopositive with f(x), such that the following Jackson type estimate ||f-r||p≤Cδl^2μωφ(f,1/n)p holds, where μ is a natural number ≥3/2+1/p, and Cδ is a positive constant depending only on δ.
In this paper, we introduce a type of approximation operators of neural networks with sigmodal functions on compact intervals, and obtain the pointwise and uniform estimates of the ap- proximation. To improve the approximation rate, we further introduce a type of combinations of neurM networks. Moreover, we show that the derivatives of functions can also be simultaneously approximated by the derivatives of the combinations. We also apply our method to construct approximation operators of neural networks with sigmodal functions on infinite intervals.