A two-stage damage detection approach is proposed and experimentally demonstrated on a complicated spatial model structure with a limited number of measurements. In the experiment,five known damage patterns,including 3 brace damage cases and 2 joint damage cases,were simulated by removing braces and weakening beam鈥揷olumn connections in the structure. The limited acceleration response data generated by hammer impact were used for system identification,and modal parameters were extracted by using the eigensystem realization algorithm. In the first stage,the possible damaged locations are determined by using the damage index and the characteristics of the analytical model itself,and the extent of damage for those substructures identified at stage I is estimated in the second stage by using a second-order eigen-sensitivity approximation method. The main contribution of this paper is to test the two-stage method by using the real dynamic data of a complicated spatial model structure with limited sensors. The analysis results indicate that the two-stage approach is ableto detect the location of both damage cases,only the severity of brace damage cases can be assessed,and the reasonable analytical model is critical for successful damage detection.