A new method of processing positron annihilation lifetime spectra is proposed. It is based on an artificial neural network (ANN)-back propagation network (BPN). By using data from simulated positron lifetime spectra which are generated by a simulation program and tested by other analysis programs, the BPN can be trained to extract lifetime and intensity from a positron annihilation lifetime spectrum as an input. In principle, the method has the potential to unfold an unknown number of lifetimes and their intensities from a measured spectrum. So far, only a proof-of-principle type preliminary investigation was made by unfolding three or four discrete lifetimes. The present study aims to design the network. Besides, the performance of this method requires both the accurate design of the BPN structure and a long training time. In addition, the performance of the method in practical applications is dependent on the quality of the simulation model. However, the chances of satisfying the above criteria appear to be high. When appropriately developed, a trained network could be a very efficient alternative to the existing methods, with a very short identification time. We have used the artificial neural network codes to analyze data such as the positron lifetime spectra for single crystal materials and monocrystalline silicon. Some meaningful results are obtained.
A new simple digital positron lifetime spectrometer has been developed. It includes a DRS4 waveform digitizing board and two scintillation detectors based on the XP2020Q photomultiplier tubes and LaBr3 scintillators. The DRS4 waveform digitizing can handle small pulses, down to few tens of millivolts, and its time scale linearity and stability are very good. The new system has reached a 206 ps time resolution, which is better than the conventional analog apparatus using the same detectors. These improvements make this spectrometer more simple and convenient in comparison with other spectrometers, and it can be applied to the other scintillation timing measurements with picosecond accuracy.
A digital three-detector positron lifetime spectrometer was developed.It consists of a DRS4 waveform digitizing board and three La Br3scintillation detectors coupled to XP2020Q photomultiplier tubes.DRS4 waveform digitizing allows data sampling at up to 5 GSPS with high amplitude resolution,with good time scale linearity and stability.In the triple-coincidence,the new system could reach a 195 ps time resolution,which is better than the conventional analog apparatus with the same detectors.This spectrometer can be applied to the other scintillation timing measurements with picoseconds accuracy.