Municipal solid waste (MSW) and its disposal are gaining significant importance in geotechnical and geoenvironmental engineering. However, conventional research is primarily focused on fresh MSW or MSW that is compacted under its own weight in the landfill. In this work, a series of tests to study the properties of a densified MSW after ground treatment were presented. The tests involved oedometer test, simple shear test, triaxial shear test, and permeability test, which were conducted to investigate the compressibility, shear strength, creep behavior and permeability of the MSW. The results show that the compressibility modulus of the MSW increases as the dry density increases. However, the influence of density on modulus decreases once the density reaches a certain value. Like most soils, the stress-strain curve of the densified MSW can be approximated by a hyperbola in the triaxial shear test. Fibrous components provide additional cohesion for MSW, but have a relatively smaller effect on friction angle. Permeability is also found to be closely related to the dry density of the MSW, i.e., MSW with a higher dry density has a smaller permeability. The permeability coefficient may be less than 10 7 cm/s if the density is high enough.
JIE Yu-xinXU Wen-jieDUNZHU DanzengWEI Yi-fengPENG TaoZHOU Zai-yang