D-Glucose, L-arabinose, D-mannose, D-xylose, and cellobiose are saccharification products of lignocellulose and important carbon sources for industrial fermentation. The fermentation efficiency with each of the five sugars and the mixture of the two most dominant sugars, D-glucose and D-xylose, was evaluated for acetone- butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824. The utilization efficacy of the five reducing sugars was in the order of D-glucose, L-arabinose, D-mannose, o-xylose and cellobiose, o-Xylose, the second most abundant component in lignocellulosic hydrolysate, was used in the fermentation either as sole carbon source or mixed with glucose. The results indicated that maintaining pH at 4.8, the optimal pH value for solventogenesis, could increase D-xylose consumption when it was the sole carbon source. Different media con- taining D-glucose and D-xylose at different ratios (1:2, 1:5, 1.5:1, 2:1 ) were then attempted for the ABE fermenta- tion. When pH was at 4.8 and xylose concentration was five times that of glucose, a 256.9% increase in xylose utilization and 263.7% increase in solvent production were obtained compared to those without pH control. These results demonstrate a possible approach combining optimized pH control and D-glucose and D-xylose ratio to increase the fermentation efficiency of lignocellulosic hydrolysate.
A new hemA gene encoding 5-aminolevulinate (ALA) synthase was cloned from Agrobacterium ra- diobacter zju-0121. The ALA synthase catalyzes the pyridoxal phosphate-dependent condensation of succinyl coen- zyme A (succinyl-CoA) and glycine to produce ALA. Four plasmids carrying the A, radiobacter hemA gene were transformed into different E. coli strains. The effects of both genetic and physiological factors on the expression of ALA synthase and ALA production were studied. The results indicated that the final intracellular activity of ALA synthase and the production of ALA in different expression systems varied largely. Among them, the recombinant E. coli BL21 (DE3) harboring the expression plasmid pET28-A. R-hemA was the most suitable one. The effects of isopropyl-β-D-thiogalactopyranoside (IPTG) addition time, IPTG concentration, culture temperature and the initial concentration of precursors and glucose on the ALA production were also evaluated. The expressed ALA synthase accounted for about 23.7% of the intracellular soluble protein. The highest specific activity of ALA syn- thase was 13.8nmol·min-1·mg-1 of intracellular soluble protein. In the batch culture of the recombinant E. coli, the extracellular ALA concentration reached 0.9 g·L-1.
The Rhodobacter capsulatus hemA gene, which encodes 5-aminolevulinic acid synthase (ALAS), was expressed in Escherichia coil Rosetta (DE3) and the enzymatic properties of the purified recombinant ALAS (RC-ALAS) were studied. Compared with ALASs encoded by hemA genes from Agrobacterium radiobacter(AR-ALAS) and Rhodobacter sphaeroides (RS-ALAS), the specific activity of RC-ALAS reached 198.2 U/mg, which was about 31.2% and 69.5% higher than those of AR-ALAS (151.1 U/mg) and RS-ALAS (116.9 U/mg), respectively. The optimum pH values and temperatures of the three above mentioned enzymes were all pH 7.5 and 37 ℃, respectively. Moreover, RC-ALAS was more sensitive to pH, while the other two were sensitive to temperature. The effects of metals, ethylene diamine tetraacetic acid (EDTA), and sodium dodecyl sulfate (SDS) on the three ALASs were also investigated. The results indicate that they had the same effects on the activities of the three ALASs. SDS and metal ions such as Co^2+, Zn^2+, and Cu^2+ strongly inhibited the activities of the ALASs, while Mn^2+ exerted slight inhibition, and K^+, Ca^2+, Ba^2+, Mg^2+, or EDTA had no significant effect. The specificity constant of succinyl coenzyme A [(kcatlKm)^S-CoA] of RC-ALAS was 1.4989, which was higher than those of AR-ALAS (0.7456) and RS-ALAS (1.1699), showing its high catalytic efficiency. The fed-batch fermentation was conducted using the recombinant strain containing the R. capsulatus hemA gene, and the yield of 5-aminolevulinic acid (ALA) achieved was 8.8 g/L (67 mmol/L) under the appropriate conditions.