The atmospheric corrosion behavior of bronze under thin electrolyte layer (TEL) with different thicknesses was monitored using cathodic polarization curves, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS). Cathodic polarization result indicates that the cathodic limiting current density increases with decreasing the TEL thickness. EIS result shows that the corrosion rate increases with decreasing the TEL thickness at the initial stage because the corrosion is dominated by the cathodic process, whereas after long immersion time, the corrosion degree with the TEL thickness is in the sequence of 150 μm 〉 310 μm〉 10μm ≈ bulk solution 〉 57 μm. The measurements of OCP and EIS present in-situ electrochemical corrosion information and their results are in good agreement with that of physical characterizations.
Micro-arc oxidation (MAO) process was carried out on AZ91D alloy in alkaline borate solution using an alternative square-wave power source with different parameters. The effects of voltage, frequency and duty cycle on the coatings were investigated by orthogonal experiment. It is found that the thickness of coatings increases with the increase of voltage and duty cycle, but decreases with the increase of frequency. The structure and morphology of the coatings also depend on voltage, frequency and duty cycle. The coatings become more porous and crack with increasing voltage and duty cycle. The coating is thin and transparent when the voltage is lower than 120 V. The corrosion resistances of different coatings were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl (mass fraction) solution. When the optimized values of voltage, frequency and duty cycle are 140 V, 2 000 Hz and 0.4, respectively, the anodic coating shows the best corrosion resistance.