The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precipitate distribution and to thus clarify strengthening mechanism.A new model was established to describe the strengthening of AA6082by HFQ process in this novel forming technique.The material constants in the model were determined using a genetic algorithm tool.This strengthening model for AA6082can precisely describe the relationship between the strengths of formed workpieces and process parameters.The predicted results agree well with the experimental ones.The Pearson correlation coefficient,average absolute relative error,and root-mean-square error between the calculated and experimental hardness values are0.99402,2.0054%,and2.045,respectively.The model is further developed into an FE code ABAQUS via VUMAT to predict the mechanical property variation of a hot-stamped cup in various ageing conditions.
The effect of friction coefficient on the deep drawing of aluminum alloy AA6111 at elevated temperatures was analyzed based on the three conditions using the finite element analysis and the experimental approach.Results indicate that the friction coefficient and lubrication position significantly influence the minimum thickness,the thickness deviation and the failure mode of the formed parts.During the hot forming process,the failure modes are draw mode,stretch mode and equi-biaxial stretch mode induced by different lubrication conditions.In terms of formability,the optimal value of friction coefficient determined in this work is 0.15.At the same time,the good agreement is performed between the experimental and simulated results.Fracture often occurs at the center of cup bottom or near the cup corner in a ductile mode or ductile-brittle mixed mode,respectively.
Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The op-timum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austen-ite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.
To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The microstructure and fracture surface of the alloy were observed by scanning electronic microscopy to analyze the potential fracture mechanisms under the experimental deformation conditions. The experimental results indicate that the fracture strain increases with increasing deformation temperature, decreasing strain rate, and decreasing stress triaxiality. Fracture is mainly caused by the nucleation, growth, and coalescence of microvoids because of the breakdown of compatibility requirements at the α/β interface. In the equiaxed microstructure, the fracture strain decreases with decreasing volume fraction of the primary α-phase(αp) and increasing α/β-interface length. In the bimodal microstructure, the fracture strain is mainly affected by α-lamella width.
Lei YangBao-yu WangJian-guo LinHui-jun ZhaoWen-yu Ma
The hot deformation behavior,microstructure evolution and fracture characteristics of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy were investigated by isothermal tensile tests.Results reveal that flow softening is caused by dynamic globularization of the bimodal microstructure,which also results in a relatively high stress exponent and thermal activation energy.The corresponding SEM,EBSD and TEM observations indicate that the dynamic globularization at750and800℃is accomplished by the formation ofα/αsub-grain boundary and penetration of theβphase.However,dynamic recrystallization(DRX)is the main globularization mechanism at850℃,which was proved by the generation of fine grains with a necklace-like character due to the transformation of low-angle boundaries(LABs)into high-angle boundaries(HABs).With an increase in the deformation temperature or a decrease in the strain rate,the fracture mechanism changes from microvoid coalescence to intergranular fracture.