您的位置: 专家智库 > >

国家自然科学基金(30650002)

作品数:3 被引量:9H指数:2
相关作者:蔡得田祝剑峰刘幼琪王爱云宋兆建更多>>
相关机构:湖北大学更多>>
发文基金:国家自然科学基金国家高技术研究发展计划湖北省自然科学基金更多>>
相关领域:农业科学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇农业科学

主题

  • 2篇RICE
  • 2篇POLYPL...
  • 1篇生殖特性
  • 1篇胚囊
  • 1篇胚胎学
  • 1篇胚胎学研究
  • 1篇花粉
  • 1篇花粉败育
  • 1篇减数
  • 1篇减数分裂
  • 1篇败育
  • 1篇POLLEN
  • 1篇TETRAP...
  • 1篇ACD
  • 1篇BREEDI...
  • 1篇CHARAC...
  • 1篇FLORAL
  • 1篇LINES
  • 1篇MEIOSI...
  • 1篇CHARAC...

机构

  • 1篇湖北大学

作者

  • 1篇陈冬玲
  • 1篇宋兆建
  • 1篇王爱云
  • 1篇刘幼琪
  • 1篇祝剑峰
  • 1篇蔡得田

传媒

  • 1篇Agricu...
  • 1篇植物遗传资源...
  • 1篇Scienc...

年份

  • 1篇2009
  • 1篇2008
  • 1篇2007
3 条 记 录,以下是 1-3
排序方式:
异源六倍体水稻AACCDD和三倍体水稻ACD生殖特性的细胞胚胎学研究被引量:6
2008年
利用异源多倍体杂种优势是多倍体水稻研究的第三阶段,但异源多倍体杂种常常不育。为明确其不育特点,本文以本实验室通过远缘杂交获得的栽培稻(AA)品种DTS137和高秆野生稻O.alta(CCDD)的杂种三倍体ACD和加倍形成的六倍体AACCDD为材料,分别对其花粉和胚囊发育过程进行石蜡切片观察,发现3x与6x之间以及6x雌性和雄性生殖方式和前途具有明显的不同:(1)异源三倍体ACD水稻杂种花粉败育彻底,败育发生在小孢子母细胞时期,绒毡层细胞提前解体;大孢子母细胞不能进行减数分裂,与周围的珠心组织一起发生解体,雌性完全败育。(2)异源六倍体水稻杂种(AACCDD)的雄性败育发生在小孢子母细胞减数分裂的细线期,此期小孢子母细胞发育停滞,随后解体;而雌性器官的发育基本正常。推测异源六倍体杂种的不育性与不同基因组间存在着部分核质不亲和性有关。据此,为了克服六倍体水稻AACCDD的不育性和验证该杂种雌性可育的结论,以栽培稻(AA)的PM eS二倍体品系HN2026-2x为父本与之杂交,通过胚挽救成功获得回交杂种BC1F1植株,经根尖染色体鉴定为2n=4x=48,系由AACD组成。虽然该异源三基四倍体是不育的,但为随后的染色体加倍创造AAAACCDD同源异源八倍体,进而获得结实的同源异源多倍体杂种打下了良好的基础。
祝剑峰刘幼琪王爱云宋兆建陈冬玲蔡得田
关键词:花粉败育胚囊减数分裂
Study on Floral and Pollen Characters of Tetraploid Rice
2009年
Polyploidization is the evolution trend of many crops, and the yield increased obviously after polyploidization. The polyploidization of rice often brings "gigas" of both vegetative organs and seeds. Howevere, in rice breeding, it is required for restoring lines to have not only big anthers but also abundant pollens. People often doubt that the enlargement of the floral organ may just be enlargement of cell size in polyploid rice. So, it is of significance to study characteristics of floral organs and pollens of several tetraploid rice varieties or lines. Floral organ and pollen characteristics of Sg99012 and HN2026 were studied comparatively by stages and different ploidy levels, with the materials 9311, HD9802S, and PA64S as the control. The results showed that chromosome doubling had much more influence on floral characteristics of every lines than seeding by stages, and the tetraploids of every lines displayed "gigas". In correlation analysis, spikelet length, spikelet width, and anther length had significant correlation; spikelet width and anther width had significant correlation, too. Both seeding by stages and chromosome doubling made the correlations of characters between every floral organ changed to some extent. Seeding by stages had little effect on pollen diameter and fertility of HN2026-4X and Sg99012-4X. But chromosome doubling increased pollen size of every lines remarkably, and also increased the pollen quantity of PMeS (polyploid meiosis stability) restoring line HN2026-4X and gene map restoring line 9311-4X remarkably, whereas only had little effect on that of sterile lines. Moreover, chromosome doubling changed pollen fertility and made the number of fertility pollen of 9311 reduced significantly, but the pollen fertility of HN2026 (PMeS restoring line) and PA64S (sterile line) almost had no change after chromosome doubling. The results showed that tetraploid restoring lines had advantage of abundant and big size pollens, and tetraploid sterile lines had the characters of bi
LIU Jian-xinCHEN Jian-guoCHEN Dong-lingSONG Zhao-jianDAI Bing-chengCAI De-tian
关键词:POLLEN
The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability被引量:4
2007年
Polyploidization is a basic feature of plant evolution. Nearly all of the main food, cotton and oil crops are polyploid. When ploidy levels increase, yields double; this phenomenon suggested a new strategy of rice breeding that utilizes wide crosses and polyploidization dual advantages to breed super rice. Because low seed set rates in polyploid rice usually makes it difficult to breed, the selection of Ph-liked gene lines was emphasized. After progenies of indica-japonica were identified and selected, two poly- ploid lines, PMeS-1 and PMeS-2 with Polyploid Meiosis Stability (PMeS) genes were bred. The proce- dure included seven steps: selecting parents, crossing or multiple crossing, back-crossing, doubling chromosomes, identifying the polyploid, and choosing plants with high seed set rates that can breed themselves into stable lines. The characteristics of PMeS were determined by observing meiotic be- haviors and by cross-identification of seed sets. PMeS-1 and PMeS-2, (japonica rice), have several characteristics different from other polyploid rice lines, including a higher rate of seed set (more than 65%, increasing to more than 70% in their F1 offspring); and stable meiotic behaviors (pairing with bi- valents and quarivalents nearly without over-quarivalent in prophase, nearly without lagging chromo- somes in metaphase and without micronuclei in anaphase and telophase). The latter was obviously different from control polyploid line Dure-4X, which displayed abnormal meiotic behaviors including a higher rate of multivalents, univalents and trivalents in prophase, lagging chromosomes in metaphase and micronuclei in anaphase and telophase. There were also three differences of the breeding method between PMeS lines and normal diploid lines: chromosomes doubling, polyploidism identifying and higher seed set testing. The selection of PMeS lines is the first step in polyploid rice breeding; their use will advance the progress of polyploid rice breeding, which will in turn offer a new way to breed super rice.
CAI DeTian1, 2, CHEN JianGuo1, CHEN DongLing1, DAI BingCheng1, ZHANG Wei1, SONG ZhaoJian1, YANG ZhiFan1, DU ChaoQun1, TANG ZhiQiang1, HE YuChi1, ZHANG DaoSheng1, HE GuangCun2 & ZHU YingGuo2 1 College of Life Science, Hubei University, Wuhan 430062, China
共1页<1>
聚类工具0