The complex variable method for solving the two-dimensional thermal stress problem of icosahedral quasicrystals is stated. The closed-form solutions for icosahedral quasicrystals containing an elliptical hole subjected to a remote uniform heat flow are obtained. When the hole degenerates into a crack, the explicit solutions for the stress intensity factors is presented.
By constructing a new numerical conformal mapping and using the Stroh-type formulism, an anti-plane problem of four edge cracks emanating from a square hole in piezoelectric solids is investigated. The explicit expressions of the complex potential function, field intensity factors, energy release rates and mechanical strain energy release rate near the crack tip are obtained under the assumptions that the surfaces of the cracks and hole are electrically permeable and electrically impermeable. Numerical examples are presented to show the influences of the geometrical parameters of defects and applied mechanical/electrical loads on the energy release rate and mechanical strain energy release rate under two electrical boundary conditions.