Signal and image restoration problems are often solved by minimizing a cost function consisting of an l2 data-fidelity term and a regularization term. We consider a class of convex and edge-preserving regularization functions. In specific, half-quadratic regularization as a fixed-point iteration method is usually employed to solve this problem. The main aim of this paper is to solve the above-described signal and image restoration problems with the half-quadratic regularization technique by making use of the Newton method. At each iteration of the Newton method, the Newton equation is a structured system of linear equations of a symmetric positive definite coefficient matrix, and may be efficiently solved by the preconditioned conjugate gradient method accelerated with the modified block SSOR preconditioner. Our experimental results show that the modified block-SSOR preconditioned conjugate gradient method is feasible and effective for further improving the numerical performance of the half-quadratic regularization approach.
We present a Hermitian and skew-Herrnitian splitting (HSS) iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and positive definite/semi- definite matrices. The unconditional convergence of the HSS iteration method is proved and an upper bound on the convergence rate is derived. Moreover, to reduce the computing cost, we establish an inexact variant of the HSS iteration method and analyze its convergence property in detail. Numerical results show that the HSS iteration method and its inexact variant are efficient and robust solvers for this class of continuous Sylvester equations.