The oxidation of exposed pyrite causes acid mine drainage, soil acidification, and the release of toxic metal ions. As the important abiotic oxidants in supergene environments,oxygen and manganese oxides participate in the oxidation of pyrite. In this work, the oxidation processes of natural pyrite by oxygen and birnessite were studied in simulated systems, and the influence of p H, Fe(II) and Cr(III) on the intermediates and redox rate was investigated. SO42-and elemental S were formed as the major and minor products,respectively, during the oxidation processes. Ferric(hydr) oxides including Fe(OH)3and goethite were formed with low degree of crystallinity. Low p H and long-term reaction facilitated the formation of goethite and ferric hydroxide, respectively. The rate of pyrite oxidation by birnessite was enhanced in the presence of air(oxygen), and Fe(II) ions played a key role in the redox process. The addition of Fe(II) ions to the reaction system significantly enhanced the oxidation rate of pyrite; however, the presence of Cr(III) ions remarkably decreased the pyrite oxidation rate in aqueous systems. The introduction of Fe(II) ions to form a Fe(III)/Fe(II) redox couple facilitated the electron transfer and accelerated the oxidation rate of pyrite. The present work suggests that isolation from air and decreasing the concentration of Fe(II) ions in aqueous solutions might be effective strategies to reduce the oxidation rate of pyrite in mining soils.
Guohong QiuYao LuoCheng ChenQiang LvWenfeng TanFan LiuChengshuai Liu