In this paper, we present a new method to determine the relative permittivity of periodic stratified media using the iterative time-reversal method. Based on transmission line theory, the focal peak value of iterative time-reversal electro- magnetic waves, which contain information about the periodic stratified medium, is computed in pulse-echo mode. Using the relationship between the focal peak value and the relative permittivity of the periodic stratified medium, the relative permittivity can be obtained by measuring the focal peak value. Numerical simulations are conducted, and the results demonstrate the feasibility of the proposed approach to the measurement of the relative permittivity of a periodic stratified medium.
In this paper, split-ring-based metamaterial sheets are designed for the purpose of achieving far-field subwavelength focusing, with the aid of a time-reversal technique. The metamaterial sheets are inserted into a subwavelength array consist- ing of four element antennas, with the element spacing being as small as 1/15 of a wavelength. Experiments are performed to investigate the effect of the metamaterial sheets on the focusing resolution. The results demonstrate that in the presence of the metamaterial sheets, the subwavelength array exhibits the ability to achieve super-resolution focusing, while there is no super-resolution focusing without the metamaterial sheets. Further investigation shows that the metamaterial sheets are contributive to achieving super-resolution by weakening the cross-correlations of the channel impulse responses between the array elements.