The nanometer CeO2 powder was prepared by the method of microwave-assisted heating hydrolysis,and the nanometer CeO2-supported or ordinary CeO2-supported vanadia catalysts with different vanadium loadings(atomic ratios:100V/Ce=0.1,1,4,10,and 20) were prepared by an incipient-wetness impregnation method.Spectroscopic techniques(XRD,FT-IR,Raman and UV-Vis DRS) were utilized to characterize the structures of VOx/CeO2 catalysts.The results showed that the structures of CeO2-supported vanadium oxide catalysts de...
To study olefin reduction by using an auxiliary reactor for FCC naphtha upgrading, a large-scale cold model of a riser-bed coupled to an upper fluidized bed was established. The effect of static bed height in the upper fluidized bed on narticle flow behavior in the lower riser was investigated experimentally. A restriction index of solids holdup was used to evaluate quantitatively the restrictive effect of the upper fluidized bed. Experimental results show that, under the restrictive effect of the upper fluidized bed, the riser could be divided into three regions in the longitudinal direction: accelerating, fully developed and restriction. The axial distribution of solids holdup in the riser is characterized by large solids holdup in the top and bottom sections and small solids holdup in the middle section. Overall solids holdup increased with increasing static bed height in the upper fluidized bed, while particle velocity decreased. Such restrictive effect of the upper fluidized bed could extend from the middle and top sections to the whole riser volume when riser outlet resistance is increased, which increases with increasing static bed height in the upper fluidized bed. The upper bed exerts the strongest restriction on the area close to the riser outlet.
This paper examines the suitability of various drag models for predicting the hydrodynamics of the turbulent fluidization of FCC particles on the Fluent V6.2 platform. The drag models included those of Syamlal-O'Brien, Gidaspow, modified Syamlal-O'Brien, and McKeen. Comparison between experimental data and simulated results showed that the Syamlal-O'Brien, Gidaspow, and modified Syamlal-O'Brien drag models highly overestimated gas-solid momentum exchange and could not predict the formation of dense phase in the fiuidized bed, while the McKeen drag model could not capture the dilute charac- teristics due to underestimation of drag force. The standard Gidaspow drag model was then modified by adopting the effective particle cluster diameter to account for particle clusters, which was, however, proved inapplicable for FCC particle turbulent fluidization. A four-zone drag model (dense phase, sub- dense phase, sub-dilute phase and dilute phase) was finally proposed to calculate the gas-solid exchange coefficient in the turbulent fluidization of FCC particles, and was validated by satisfactory agreement between prediction and experiment.
Peng Li Xingying Lan Chunming Xu Gang Wang Chunxi Lu Jinsen Gao
UV-Raman spectroscopy was used to study the molecular structures of TiO2 or ZrO2-supported vana-dium oxide catalysts.The real time reaction status of soot combustion over these catalysts was de-tected by in-situ UV-Raman spectroscopy.The results indicate that TiO2 undergoes a crystalline phase transformation from anatase to rutile phase with the increasing of reaction temperature.However,no obvious phase transformation process is observed for ZrO2 support.The structures of supported va-nadium oxides also depend on the V loading.The vanadium oxide species supported on TiO2 or ZrO2 attain monolayer saturation when V loading is equal to 4(4 is the number of V atoms per 100 support metal ions).Interestingly,this loading ratio(V4/TiO2 and V4/ZrO2) gave the best catalytic activities for soot combustion reaction on both supports(TiO2 and ZrO2).The formation of surface oxygen com-plexes(SOC) is verified by in-situ UV Raman spectroscopy and the SOC mainly exist as carboxyl groups during soot combustion.The presence of NO in the reaction gas stream can promote the pro-duction of SOC.