Schemes integrating inter-carrier interference (ICI) self-cancellation and common phase error (CPE) com- pensation for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems are investi- gated. The purpose of our research is to counteract the impacts of laser phase noise and fiber nonlinearity. We propose two ICI self-cancellation-based CO-OFDM schemes, and adopt a pilot-aided decision feedback (DFB) loop for CPE compensation. The proposed schemes are compared with conventional CO-OFDM schemes at the same spectral efficiency. Simulations show that our schemes can not only enhance laser linewidth tolerance of the CO-OFDM system, but also present strong robustness against fiber nonlinearity.
We propose an all-optical modulation formats combination scheme that merges an amplitude-shift keying (ASK) signal and a differential phase-shift keying (DPSK) signal into a single differential phase amplitude- shift keying (DPASK) signal based on parametric amplification in a highly nonlinear fiber. By optimizing the power of the ASK channel, formats combination of ASK and DPSK to DPASK signal is successfully demonstrated by computational simulation. The demodulation process of the generated DPASK pulses is investigated and the relationship between optical signal-to-noise ratio (OSNR) penalty and the input ASK power is presented. The proposed scheme may be used for increasing spectral efficiency and all-optical logic device.
Fiber nonlinearity is one of the most important limiters of capacity in coherent optical communications. In this paper, we review two nonlinear compensation methods: digital backward propagation (BP) and nonlinear electrical equalizer (NLEE) based on the timedomain Volterra series. These compensation algorithms are implemented in a singlechannel 50 Gb/s coherent optical singlecarrier frequency division multiplexed (CO-SCFDM) system transmitting over 10 × 80 km of standard singlemode fiber (SSMF).
Fan Zhang (State Key Laboratory of Advanced Optical Communication Systems & Networks, Peking University, Beijing 100871, P.R.China)