Ventilation air methane is one of available resources with a massive reserve.However,most of ventilation air methane is discharged into the air and pollutes the environment.Catalysts with high temperature resistance(>800℃)for ventilation air methane are very essential for utilization of the ventilation air methane.We mainly prepared catalysts CeO_(2)/La_(2)CoFeO_(6)and La_(2)CoFeO_(6)/CeO_(2)and comparative samples CeO_(2)and La_(2)CoFeO_(6)by the simple sol-gel method and calcined them under 9000C,and tested the catalytic performance of ventilation air methane combustion under the condition of 5 vol%H_(2)O.The experimental results show that the light-off temperature(T_(1O))and complete combustion temperature(T_(90))of the ventilation air methane combustion reaction of CeO_(2)/La_(2)CoFeO_(6)catalyst are 417.4 and 587.7℃,respectively.T_(1O)and Tgo of La_(2)CoFeO_(6)/CeO_(2)only reach 425.5 and 615.8℃.The T_(10)and T_(9O)of CeO_(2)/La_(2)CoFeO_(6)are 417.4 and 587.7℃,which are lower than those of La_(2)CoFeO_(6)[T_(10)=452.4℃and T_(90)=673.0℃)and La_(2)CoFeO_(6)/CeO_(2)(T_(10)=425.5℃and T_(90)=615.8℃).Therefore,the catalytic performance of the anti-supported rare earth oxide catalyst CeO_(2)/La_(2)CoFeO_(6)is better than that of La_(2)CoFeO_(6)and supported catalyst La_(2)CoFeO_(6)/CeO_(2).
A species of novel St-doped rare earth double perovskite catalysts (La2 xSrxNiA106, x=0, 0.1) were prepared by the sol-gel method using citric acid as a complexing agent and calcined at 1100 ℃ for 3 h, then investigated for methane catalytic combustion. The as-prepared catalysts were characterized by X-ray diffraction patterns (XRD), H2-temperature-programmed reduction (H2-TPR), specific surface area (BET), magnetic property measurement technology (M-H), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Experimental results showed that Lal.9Sr0.1NiA106 catalyst exhibited significantly improved catalytic activity (T10=378.7 ℃, T90=602.9 ℃) compared with that of La2NiAIO6, whose T10 decreased by 74.4 ℃ and T90 decreased by 66.8 ℃, respectively. The excellent catalytic activity of Lal.9Sr0.tNiA106 caused by Sr-doping could be explained by the larger number of adsorption oxygen on the catalyst surface, which could be proven by XPS analysis.