With the rapid development of WLAN( Wireless Local Area Network) technology,an important target of indoor positioning systems is to improve the positioning accuracy while reducing the online computation.In this paper,it proposes a novel fingerprint positioning algorithm known as semi-supervised affinity propagation clustering based on distance function constraints. We show that by employing affinity propagation techniques,it is able to use a fractional labeled data to adjust similarity matrix of signal space to cluster reference points with high accuracy. The semi-supervised APC uses a combination of machine learning,clustering analysis and fingerprinting algorithm. By collecting data and testing our algorithm in a realistic indoor WLAN environment,the experimental results indicate that the proposed algorithm can improve positioning accuracy while reduce the online localization computation,as compared with the widely used K nearest neighbor and maximum likelihood estimation algorithms.
Wireless local area network(WLAN) is developing to a ubiquitous technique in daily life.As a related product,WLAN based indoor positioning system is attracting more and more concern.Fingerprint is a mainstream method of wireless indoor positioning.However,it still has some shortcomings of that received signal strength(RSS) is multi-modal and sensitive to environmental factors.These characters would have a negative effect on the performance of positioning system.In this paper,a filtering algorithm based on multi-cluster-center is proposed.We make full use of this algorithm to optimize the training samples at off-line phase to improve the performance of non-linear fitting with the fingerprint feature,and further enhance the positioning accuracy.Finally,we use multiple sets of original WLAN signal samples and signal samples after filtering as the training input of positioning system respectively.After that,the results analysis is demonstrated.Simulation results show that it is a reliable algorithm to enhance the performance of WLAN indoor positioning.
An essential characteristic of the 4th Generation(4G) wireless networks is integrating various heterogeneous wireless access networks.This paper considers the network selection for both admission and handoff strategy problems in heterogeneous network of 3G/WLAN.A novel dynamic programming algorithm is proposed by taking heterogeneous network characteristics,user mobility and different service types into account.The specificity of our approach is that it puts the situations in a new model and makes decisions in stages of different states.Simulation results validate that the proposed scheme can obtain better new call blocking and handoff dropping probability performance than traditional schemes while ensuring quality-of-services(QoS) for both real-time and data connections.
Recently manifold learning algorithm for dimensionality reduction attracts more and more interests, and various linear and nonlinear,global and local algorithms are proposed. The key step of manifold learning algorithm is the neighboring region selection. However,so far for the references we know,few of which propose a generally accepted algorithm to well select the neighboring region. So in this paper,we propose an adaptive neighboring selection algorithm,which successfully applies the LLE and ISOMAP algorithms in the test. It is an algorithm that can find the optimal K nearest neighbors of the data points on the manifold. And the theoretical basis of the algorithm is the approximated curvature of the data point on the manifold. Based on Riemann Geometry,Jacob matrix is a proper mathematical concept to predict the approximated curvature. By verifying the proposed algorithm on embedding Swiss roll from R3 to R2 based on LLE and ISOMAP algorithm,the simulation results show that the proposed adaptive neighboring selection algorithm is feasible and able to find the optimal value of K,making the residual variance relatively small and better visualization of the results. By quantitative analysis,the embedding quality measured by residual variance is increased 45. 45% after using the proposed algorithm in LLE.