The effect of flow passage length in the die cavity and extrusion wheel velocity on the shape of aluminum sheath during the continuous extrusion sheathing process was analyzed by using finite element methods based on software DEFORM 3D and experimentally validated. The results show that by increasing the flow passage length, the velocity of metal at the cross-section of sheath tends toward uniformity, the values of the bending angles of sheath gradually approach the ideal value of zero and the cross-section exhibits a better shape. The extrusion wheel velocity has negligible effects on the bending shape and cross-section of the sheath product when a long flow passage is used.
A new copper strip production technology combined with continuous extrusion and rolling technology was proposed. The roll velocity must first be matched with the continuous extrusion velocity to achieve continuous extrusion and roll forming. The bite condition of continuous extrusion was determined, and the compatibility equation between the roll velocity and parameters such as the extrusion wheel velocity, reduction, and strip size was established through mechanical by plastic theoretical calculations. The finite element model of continuous extrusion and rolling was then established by using the TLJ400 continuous extrusion machine with a roll diameter of 200 mm. The relationship between the continuous extrusion and rolling velocities was determined through numerical simulations by software DEFORM-3D, and the accuracy of compatibility equation of velocity was verified.