FePtNi films with different Ni contents were deposited on glass substrates by RF magnetron sputtering, and the L10-FePtNi films were obtained after the asdeposited samples were subjected to vacuum annealing. The magnetic properties, structures, and orientations of the L10-FePt films with Ni doping were studied. The results show that with increasing Ni content, the (001) peak position of the FePtNi films shifts to a higher angle in comparison with FePt, which suggests that there is partial Ni substitution in the L10 lattice. The perpendicular coercivity decreases from 661 to 142 kA/m and magnetization decreases from 512 to 433 kA/m with increasing Ni content. In comparison with FePt films, the FePtNi films can effectively reduce the Curie temperature, which makes FePtNi films promising media candidates in thermally assisted recording (TAR).
DONG Kaifeng CHENG Xiaomin YAN Junbing CHENG Weiming LI Peng YANG Xiaofei
FePt thin films and [FePt/Ag]n multilayer thin films were prepared by magnetron sputtering technique and subsequent annealing process. By comparing the microstructure and magnetic properties of these two kinds of thin films, effects of Ag addition on the structure and properties of FePt thin films were investigated. Proper Ag addition was found helpful for FePt phase transition at lower annealing temperature. With Ag addition, the magnetic domain pattern of FePt thin film changed from maze-like pattern to more discrete island-like domain pattern in [FePt/Ag]n multilayer thin films. In addition, introducing nonmagnetic Ag hindered FePt grains from growing larger. The in-depth defects in FePt films and [FePt/Ag]n multilayer films verify that Ag addition is attributed to a large number of pinning site defects in [FePt/Ag]n film and therefore has effects on its magnetic properties and microstructure.
Copper nitride (Cu3N) thin films were successfully deposited on glass substrates by reactive radio frequency magnetron sputtering.The effects of sputtering parameters on the structure and properties of the films were studied.The experimental results show that with increasing of RF power and nitrogen partial pressure,the preferential crystalline orientation of Cu3N film is changed from (111) to (100).With increasing of substrate temperature from 70 ℃ to 200 ℃,the film phase is changed from Cu3N phase to Cu.With increasing sputtering power from 80 W to 120 W,the optical energy decreases from 1.85 eV to 1.41 eV while the electrical resistivity increases from 1.45 ×102 Ω·cm to 2.99×103 Ω·cm,respectively.