The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.
This paper performs a numerical simulation of concentric-ring discharge structures within the scope of a twodimensional diffusion-drift model at atmospheric pressure between two parallel circular electrodes covered with thin dielectric layers. With a relative high frequency the discharge structures present different appearances of ring structures within different radii in time due to the evolvement of the filaments. The spontaneous electron density distributions help understanding the formation and development of self-organized discharge structures. During a cycle the electron avalanches are triggered by the electric field strengthened by the feeding voltage and the residual charged particles on the barrier surface deposited in the previous discharges. The accumulation of charges is shown to play a dominant role in the generation and annihilation of the discharge structures. Besides, the rings split and unify to bring and annihilate rings which form a new discharge structure.
Effect of airflow on the dielectric barrier discharge in ambient air at atmospheric pressure is presented. The influence of airflow on the spatial distribution and intensity of a discharge were investigated experimentally. A critical frequency of 1 kHz was found. With the frequency above 1 kHz, when a fast airflow was introduced into the discharge gap, the discharge patterns varied from filaments to curved stripes and the curvature degree rose with an increase in the airflow speed. At the same time, the discharge intensity decreased. However with the discharge frequency below 1 kHz, the discharge intensity would get greater with an increase in the airflow speed.
This paper presents the interactions between two cold atmospheric plasma jets. By changing the experimental conditions including the gas flow rate, the applied voltage, the power supply frequency and the inter-electrode distance d, three different interaction modes, attraction, repulsion and combination, were observed. It is shown that the interaction modes of the two jets are principally affected by the electrodes, the gas flow rate, the plasma jets and the power supply frequency.
A one-dimensional fluid model for homogeneous atmospheric pressure barrier discharges in helium is presented by considering elementary processes of excitation and ionization including a metastable atom effect. Using this model we investigate the behaviours of the helium metastable atoms in discharges as well as their influence on the discharge characteristics. It is shown that the metastable atoms with a relatively high concentration during the discharge are mainly produced in the active phase of the discharge and dissolved in the off phase. It is also found that the metastable atom collisions can not only provide seed electrons for discharges but also influence the concentration of ions. A reduction of matestable atom density results in a drop in the charged particle densities and causes a qualitative change in the discharge patterns.