Vegetation patterns are important in the regulation of earth surface hydrological processes in arid and semi-arid areas. Laboratory-simulated rainfall experiments were used at the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling, northwestern China, to quantify the effects of Artemisia capillaris patterns on runoff and soil loss. The quantitative relationships between runoff/sediment yield and vegetation parameters were also thoroughly analyzed using the path analysis method for identifying the reduction mechanism of vegetation on soil erosion. A simulated rainfall intensity of 90 mm/h was applied on a control plot without vegetation (Co) and on the other three different vegetation distribution patterns: a checkerboard pattern (CP), a banded pattern perpendicular to the slope direction (BP), and a single long strip parallel to the slope direction (LP). Each patterned plot received two sets of experiments, i.e. intact plants and roots only, respectively. All treatments had three replicates. The results showed that all the three other different patterns (CP, BP and LP) of A. capillaris could effectively reduce the runoff and sediment yield. Compared with Co, the other three intact plant plots had a 12%-25% less runoff and 58%-92% less sediment. Roots contributed more to sediment reduction (46%-70%), whereas shoots contributed more to runoff reduction (57%-81%). BP and CP exhibited preferable controlling effects on soil erosion compared with LP. Path analysis indicated that root length density and plant number were key parameters influencing runoff rate, while root surface area density and root weight density were central indicators affecting sediment rate. The results indicated that an appropriate increase of sowing density has practical significance in conserving soil and water.
植物的光合作用是评估全球变化背景下碳循环的重要环节。目前,氮沉降增加日益明显,作为植物生长关键因子的可利用氮将对植物的光合生理生态过程产生影响。以长白山阔叶红松林主要树种红松和紫椴的幼苗为例,通过模拟氮沉降增加(氮添加量分别为0、23、46和69 kg N hm^(-2)a^(-1))的方法,利用Li-6400光合测定系统分别测算了两个树种的最大净光合速率(A_(max))、气孔导度(G_(smax))和水分利用效率(WUE)的值,并测算了叶氮含量、叶绿素含量、比叶面积、光合氮利用效率(PNUE)的值。通过分析A_(max)随不同施氮量的变化规律,同时结合其他叶片特征参数的变化,进一步探讨植物光合随氮添加的变化原因。研究结果显示:两个树种的A_(max)值在0—46 kg N hm^(-2)a^(-1)的氮添加范围内随施氮量的增加而增大,继续增加施氮量至69 kg Nhm^(-2)a^(-1)则出现下降。叶绿素含量、G_(smax)、PNUE和比叶面积在不同的氮添加水平下的变化规律与A_(max)的一致,且均与A_(max)呈显著正相关关系。叶氮含量与A_(max)的值仅在0—46 kg N hm^(-2)a^(-1)氮添加范围内呈显著正相关。A_(max)与WUE的相关关系不显著。相同氮添加水平下,氮添加对阔叶树种紫椴各生理生态参数(A_(max)、G_(smax)、叶氮含量、比叶面积、PNUE和WUE)的促进程度高于对针叶树种红松各生理生态参数的促进程度。研究结果可为评估氮沉降增加背景下我国东北地区的碳循环提供依据。