A novel synthesis route to obtain highly dispersed molybdenum carbides in porous silica is described. The synthesis was carried out by a single-step heat treatment of molybdenum-containing and methyl-modified silica (Mo-M-SiO2) in argon atmosphere at 973 K. Mo-M-SiO2 precursor was facilely obtained via a one-pot synthesis route, using (NH4)6Mo7O24 4H2O (AHM) as molybdenum sources and polymethylhydrosiloxane (PMHS) as silica sources at the initial synthetic step. The optimal C/Mo molar ratio in reaction system for complete carburization of molybdenum species was 7. The carburization process of molybdenum species followed a nontopotactic route involving a MoO2 intermediate phase, which was evidenced by XRD, N2 adsorption-desorption and in situ XPS. Formation mechanism of Mo-M-SiO2 precursor was also proposed by observation of the reaction between AHM and PMHS with TEM. Furthermore, by adding TEOS into silica sources and adjusting TEOS/PMHS mass ratio, crystal phase of molybdenum carbides transferred from β-Mo2C to α-MoC1-x, and SiO2 structure changed from microporous to micro/mesoporous. Catalytic performances of samples were tested using CO hydrogenation as a probe reaction. The supported molybdenum carbides exhibited high selectivity for higher alcohol synthesis compared with bulk β-Mo2C and α-MoC1-x.
A two-step synthesis was used to control the shape of silver nanoparticles prepared via reduction of Ag^+ ions in aqueous Ag(NH3)2NO3 by poly(N-vinyl-2 First, a few spherical silver nanoparticles,-10 nm in size, were pyrrolidone) (PVP). Then, in a subsequent hydrothermal treatment, the remaining Ag^+ ions were reduced by PVP into polyhedral nanoparticles, or larger spherical nanoparticles formed from the small spherical seed silver nanoparticles in the first step. The morphology and size of the resultant particles depend on the hydrothermal temperature, PVP/Ag molar ratio and concentration of Ag^+ ions. By using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD), the possible growth mechanism of the silver nanoparticles was discussed. 2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V.