In this study, the advantages and the limitations of previous low-latitude magnetopause empirical models are discussed. In order to overcome their limitations and inherit their advantages, a new continuous function for the influence of the interplanetary magnetic field (IMF) Bz on the magnetopause, the Shue model function and the 613 low-latitude magnetopause crossings are used to construct a new low-latitude magnetopause model parameterized by the solar wind dynamic pressure (Dp) and IMF Bz. In comparison with the previous low-latitude magnetopause models, it is found that the new model improves the prediction capability and has a large range of validity for the low-latitude magnetopause. In addition, it is also demonstrated that the new model and the previous low-latitude magnetopause models are not appropriate for predicting the high-latitude magnetopause.
LIN RuiLinZHANG XiaoXinLIU SiQingWANG YongLiGONG JianCun