This paper reports the surface morphology and I-V curves of porous silicon (PS) samples and related devices. The observed fabrics on the PS surface were found to affect the electrical property of PS devices. When the devices were operated under different external bias (10 V or 3 V) for 10 min, their observed obvious differences in electrical properties may be due to the different control mechanisms in the A1/PS interface and PS matrix morphology.
By indentation at room temperature followed by annealing at high temperatures, the pinning effect of germanium on dislocations in germanium-doped Czochralski silicon was investigated. Experimental results show that the dislocations in germanium-doped Czochralski silicon move shorter and slower than those in Czochralski silicon undoping with germanium when the concentration of germanium is over 1×1018 cm-3. The retarding velocity of dislocations is contributed to the dislocations pinning effect of the strain field introduced by the high concentration germanium, and the Ge4B cluster and the oxygen precipitation those are preferred to form at higher concentration germanium.