This paper uses the Taylor expansion to seek an approximate Korteweg- de Vries equation (KdV) solution to a higher-order traffic flow model with sufficiently large diffusion. It demonstrates the validity of the approximate KdV solution considering all the related parameters to ensure the physical boundedness and the stability of the solution. Moreover, when the viscosity coefficient depends on the density and velocity of the flow, the wave speed of the KdV solution is naturally related to either the first or the second characteristic field. The finite element method is extended to solve the model and examine the stability and accuracy of the approximate KdV solution.
A traveling wave solution to the Aw-Rascle traffic flow model that includes the relaxation and diffusion terms is investigated. The model can be approximated by the well-known Kortweg-de Vries (KdV) equation. A numerical simulation is conducted by the first-order accurate Lax-Friedrichs scheme, which is known for its ability to capture the entropy solution to hyperbolic conservation laws. Periodic boundary conditions are applied to simulate a lengthy propagation, where the profile of the derived KdV solution is taken as the initial condition to observe the change of the profile. The simulation shows good agreement between the approximated KdV solution and the numerical solution.