We theoretically investigate the strong-field ionization of H+2 molecules in four different electronic states by calculating photoelectron angular distributions in circularly polarized fields. We find that the structure of photoelectron angular distribution depends on the molecular orbital as well as the energy of the photoelectron. The location of main lobes changes with the symmetric property of the molecular orbital. Generally, for molecules with bonding electronic states, the photoelectron’s angular distribution shows a rotation of π/2 with respect to the molecular axis, while for molecules with antibonding electronic states, no rotation occurs. We use an interference scenario to interpret these phenomena. We also find that, due to the interference effect, a new pair of jets appears in the waist of the main lobes, and the main lobes or jets of the photoelectron’s angular distribution are split into two parts if the photoelectron energy is sufficiently high.
Using a nonperturbative quantum electrodynamics theory of high-order harmonic generation (HHG), a scaling law of HHG is established. The scaling law states that when the atomic binding energy Eb, the wavelength ), and the intensity I of the laser field change simultaneously to kEb, λ/k, and k3I, respectively. The characteristics of the HHG spectrum remain unchanged, while the harmonic yield is enhanced k3 times. That HHG obeys the same scaling law with above-threshold ionization is a solid proof of the fact that the two physical processes have similar physical mechanisms. The variation of integrated harmonic yields is also discussed.
By developing a full quantum scattering theory of high-order above-threshold ionization,we study the energy spectra and the angular distributions of photoelectrons from atoms with intense laser fields shining on them.We find that real rescattering can occur many times,and even infinite times.The photoelectrons from the rescattering process form a broad plateau in the kinetic-energy spectrum.We further disclose a multiple-plateau structure formed by the high-energy photoelectrons,which absorb many photons during the rescattering process.Moreover,we find that both the angular distributions and the kinetic-energy spectra of photoelectrons obey the same scaling law as that for directly emitted photoelectrons.