In order to solve the multiple power extreme value point problem caused by system frequency splitting during wireless energy transmission at short distances a transmission model of the system is established.With the comprehensive consideration of the resonance frequency load parameters and the coupling between coils the internal factors of frequency splitting and boundary conditions are discussed.The results show that under the condition of the fixed load the higher the natural resonance frequency the easier the frequency splitting. As the frequency splitting occurs the frequency of the maximum power transfer is no longer with the natural resonance frequency which can make the system unstable and the transfer power more difficult to control. Therefore a decreasing-frequency method is proposed to avoid the system frequency splitting. And decreasing the system resonance frequency can make the system successfully withdraw the frequency splitting area at a short-distance range.Under the fixed load condition the transmission power of the system can be increased by 400% and the transmission efficiency is reduced by only 14% which greatly improves the transmission performance of the system.
As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.
近来,无线电能传输技术受到了越来越广泛的关注,同时,该技术也被尝试应用于电动汽车以实现电动汽车的无线充电。与能量在自由空间传播相比,电动汽车无线充电时的电磁环境有很大不同,而电磁安全问题也变得日益突出。基于上述问题,首先分析了该领域的安全限制与标准问题;其次通过仿真分析了电动汽车充电时的参数变化、电磁环境以及对人体的影响;最后通过电动汽车试验来验证仿真结果,系统实现了约为3.5 k W的能量传输。该研究可为无线充电电动汽车的优化设计提供理论依据。