Lee discrepancy has been employed to measure the uniformity of fractional factorials.In this paper,we further study the statistical justification of Lee discrepancy on asymmetrical factorials.We will give an expression of the Lee discrepancy of asymmetrical factorials with two-and three-levels in terms of quadric form,present a connection between Lee discrepancy,orthogonality and minimum moment aberration,and obtain a lower bound of Lee discrepancy of asymmetrical factorials with two-and three-levels.
在试验设计中,一阶回归模型通常被作为合格拟合模型用来从众多因子中筛选出效应显著的特殊因子,而Q和Q_B准则能够比较简单地从大量的合格拟合模型中找出具有最优性质的设计.主要探讨了当拟合模型为一阶回归模型时,二水平的初始设计d与其Double设计(d d d -d)在Q和Q_B准则下的最优关系.给出了初始设计d的Q和Q_B值与其Double设计的Q和Q_B值之间的解析关系,从而得到在Q或Q_B准则下如果初始设计d是最优的,那么其Double设计也是最优的.此外,也分别给出了初始设计d及其Double设计的Q值和Q_B值的一个下界.