A new protocol for the anonymous communication of quantum information is proposed. The anonymity of the receiver and the privacy of the quantum information are perfectly protected except with exponentially small probability in this protocol. Furthermore, this protocol uses single photons to construct anonymous entanglement instead of multipartite entangled states, and therefore it reduces quantum resources compared with the pioneering work.
A quantum secure direct communication protocol with cluster states is proposed.Compared with the deterministic secure quantum communication protocol with the cluster state proposed by Yuan and Song(Int.J.Quant.Inform.,2009,7:689),this protocol can achieve higher intrinsic efficiency by using two-step transmission.The implementation of this protocol is also discussed.
We present an efficient scheme for undeniable five-party quantum state sharing(FQSTS) of an arbitrary single-atom state with a five-atom cluster state in cavity QED.The implementation of this scheme does not involve the joint-state measurement of multi-atoms,which makes it convenient in a practical application.The scheme is also insensitive to the cavity decay and the thermal field.
The discrimination of quantum operations plays a key role in quantum information and computation. Unlike discriminating quantum states, it has some special properties which can be carried out in practice. In this paper, we provide a general description of discriminating quantum operations. Concretely speaking, we describe the distinguisha- bility between quantum operations using a measure called operator fidelity. It is shown that, employing the theory of operator fidelity, we can not only verify some previous results to discriminate unitary operations, but also exhibit a more general discrimination condition. We further apply our results to analysing the security of some quantum cryptographic protocols and discuss the realization of our method using well-developed quantum algorithms.
We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisfy the requirements for controlled quantum teleportation. The comparison between this scheme and the previous ones shows that it is more economical and efficient.
We show a scheme to distribute the entanglement by using three-mode separable Gaussian state prepared with imperfect equipments. The scheme achieves the aim that the entanglement is distributed between two distant parties with only Gaussian operations and linear optics elements. Moreover, we analyse the logarithmic negativity of the entanglement shared between the two parties when the systems are imperfect and arrive at the conclusion that the logarithmic negativity is asymptotically stable with fluctuations within a certain space range.
We present two novel quantum secure direct communication(QSDC) protocols over different collective-noise channels.Different from the previous QSDC schemes over collective-noise channels,which are all source-encrypting protocols,our two protocols are based on channel-encryption.In both schemes,two authorized users first share a sequence of EPR pairs as their reusable quantum key.Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel.In theory,the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks.For checking eavesdropping,the two parties only need to perform two-particle measurements on the decoy states during each round.Finally,we make a security analysis of our two protocols and demonstrate that they are secure.
We present a protocol for quantum private comparison of equality(QPCE) with the help of a semi-honest third party(TP).Instead of employing the entanglement,we use single photons to achieve the comparison in this protocol.By utilizing collective eavesdropping detection strategy,our protocol has the advantage of higher qubit efficiency and lower cost of implementation.In addition to this protocol,we further introduce three robust versions which can be immune to collective dephasing noise,collective-rotation noise and all types of unitary collective noise,respectively.Finally,we show that our protocols can be secure against the attacks from both the outside eavesdroppers and the inside participants by using the theorems on quantum operation discrimination.