Let A be a factor von Neumann algebra and Ф be a nonlinear surjective map from A onto itself. We prove that, if Ф satisfies that Ф(A)Ф(B) - Ф(B)Ф(A)* -- AB - BA* for all A, B ∈ A, then there exist a linear bijective map ψA →A satisfying ψ(A)ψ(B) - ψ(B)ψ(A)* = AB - BA* for A, B ∈ A and a real functional h on A with h(0) -= 0 such that Ф(A) = ψ(A) + h(A)I for every A ∈ A. In particular, if .4 is a type I factor, then, Ф(A) = cA + h(A)I for every A ∈ .4, where c = ±1.
The author establishes operator-valued Fourier multiplier theorems on multi-dimensional Hardy spaces Hp(Td;X),where 1 ≤ p < ∞,d ∈ N,and X is an AUMD Banach space having the property (α).The suffcient condition on the multiplier is a Marcinkiewicz type condition of order 2 using Rademacher boundedness of sets of bounded linear operators.It is also shown that the assumption that X has the property (α) is necessary when d ≥ 2 even for scalar-valued multipliers.When the underlying Banach space does not have the property (α),a suffcient condition on the multiplier of Marcinkiewicz type of order 2 using a notion of d-Rademacher boundedness is also given.
We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X).
We study the well-posedness of the equations with fractional derivative D^αu(t) = Au(t) + f(t),0≤ t ≤ 2π, where A is a closed operator in a Banach space X, α 〉 0 and D^α is the fractional derivative in the sense of Weyl. Using known results on LP-multipliers, we give necessary and/or sufficient conditions for the LP-well-posedness of this problem. The conditions we give involve the resolvent of A and the Rademacher boundedness. Corresponding results on the well-posedness of this problem in periodic Besov spaces, periodic Triebel-Lizorkin spaces and periodic Hardy spaces are also obtained.