设计实现了一种带参考通道的时间交叉ADC(TIADC)通道误差数字后台实时校准方法。参考通道ADC与TIADC各个子通道ADC依次对齐,对同一输入信号在同一时刻进行采样并转换,输出差值被用在数字后台LMS自适应校准算法中以计算通道间的失配误差估计值,实现对各通道失调失配、增益失配和采样时刻失配造成误差的实时校准。FPGA实验结果表明,应用于12 bit,4通道,采样频率400 MS/s的TIADC中,归一化输入频率fin/fs=0.134时,在失调误差、增益误差和采样时钟误差分别为5%FSR、5%和1%Ts条件下,校准后信号噪声失真比(SNR)和无杂散动态范围(SFDR)分别提高了约19.61 d B和28.28 d B,为73.83 d B和86.15 d B,有效位达到11.96位。本校准方法计算复杂度低、易于硬件实现,能够应用于任意通道数的TIADC校准。
A novel Time-Interleaved Analog-to-Digital Converter (TIADC) digital background calibration for the mismatches of offsets, gain errors, and timing skews based on split-ADC is proposed. Firstly, the split-ADC channels in present TIADC architecture are designed to convert input signal at two different channel sampling rates so that redundant channel to facilitate pair permutation is avoided. Secondly, a high-order compensation scheme for correction of timing skew error is employed for effective calibration to preserve high-resolution when input frequency is high. Numerical simulation performed by MATLAB for a 14-bit TIADC based on 7 split-ADC channels shows that Signal-to-Noise and Distortion Ratio (SNDR) and Spurious Free Dynamic Range (SFDR) of the TIADC achieve 86.2 dBc and 106 dBc respectively after calibration with normalized input frequency near Nyquist frequency.