This paper presents the heave responses and the moonpool water motions of a truss Spar platform with semi-closed moonpool in random waves. A 2-DOF(degree of freedom) coupling dynamical equations of the platform heave and vertical motions of the moonpool water are derived. The linear wave theory is used to simulate the random waves. The response statistical values and the power spectrums are calculated to analyze the mutual influences between the platform heave and the moonpool water motions for different opening ratios of the moonpool. The effect of coupling parameters on the platform heave and the moonpool water motions are analyzed. The results show that motions of the moonpool water significantly affected the platform heave when the characteristic wave period is far away from the natural period of the platform heave, and different moonpool opening ratios lead to different heave amplitudes of the platform. In the actual design, an optimized moonpool opening ratio can be designed to reduce heave motions of the platform.
The three-dimensional natural vibration characteristics of water inside a moon pool of an ocean structures are studied. The governing equations are derived based on the linear potential flow theory, and the boundary condition of the total opening bottom suggested by Molin is adopted. A semi-analytical method is used to solve the governing equations, and the natural frequencies and the motion modes are obtained. Two types of motions are studied: (1) the piston motion in the vertical direction, and (2) the sloshing motion of the free surface. The influences of moon pool's structural parameters on the natural frequencies, and the modal shapes are analyzed.