The trajectory of a shipbome radar target has a certain complexity, randomness, and diversity. Tracking a strong maneuvering target timely, accurately, and effectively is a key technology for a shipbome radar tracking system. Combining a variable structure interacting multiple model with an adaptive grid algorithm, we present a variable structure adaptive grid inter- acting multiple model maneuvering target tracking method. Tracking experiments are performed using the proposed method for five maneuvering targets, including a uniform motion - uniform acceleration motion target, a uniform acceleration motion - uni- form motion target, a serpentine locomotion target, and two variable acceleration motion targets. Experimental results show that the target position, velocity, and acceleration tracking errors for the five typical target trajectories are small. The method has high tracking precision, good stability, and flexible adaptability.
The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.